Myelocytic leukemia


Myelocytic leukemia

Description, Causes and Risk Factors:

Alternative Name: Granulocytic leukemia, myelogenic leukemia, myelogenous leukemia, and myeloid leukemia.

The cells that make up blood are produced in the bone marrow and the lymph system.

    The bone marrow is the spongy tissue found in the large bones of the body.

  • The lymph system includes the spleen, the thymus, and the tonsils. In addition, the lymph vessels and lymph nodes are also part of the lymph system. The lymph is a milky fluid that contains cells. Clusters of lymph nodes are found in the neck, underarm, pelvis, abdomen, and chest.

The main types of cells found in the blood are the red blood cells (RBCs), which carry oxygen and other materials to all tissues of the body; white blood cells (WBCs), which fight infection; and the platelets, which play a part in the clotting of the blood.

The white blood cells can be further subdivided into three main types:

    Granulocytes. A mature granular leukocyte, including neutrophilic, acidophilic, and basophilic types of polymorphonuclear leukocytes, i.e., respectively, neutrophils, eosinophils, and basophils.

  • Monocytes: A relatively large mononuclear leukocyte (16-22 ?m in diameter), that normally constitutes 3-7% of the leukocytes of the circulating blood, and is normally found in lymph nodes, spleen, bone marrow, and loose connective tissue. When treated with the usual dyes, monocytes manifest an abundant pale blue or blue-gray cytoplasm that contains numerous, fine, dustlike, red-blue granules; vacuoles are frequently present; the nucleus is usually indented, or slightly folded, and has a stringy chromatin structure that seems more condensed where the delicate strands are in contact. They are also important in defending the body against pathogens.

  • Lymphocytes: A white blood cell formed in lymphatic tissue throughout the body (e.g., lymph nodes, spleen, thymus, tonsils, Peyer patches, and sometimes in bone marrow) and in normal adults making up approximately 22-28% of the total number of leukocytes in the circulating blood. Lymphocytes are generally small (7-8 ?m), but larger forms are frequent (10-20 ?m); with Wright (or a similar) stain, the nucleus is deeply colored (purple-blue), and is composed of dense aggregates of chromatin within a sharply defined nuclear membrane; the nucleus is usually round, but may be slightly indented, and is eccentrically situated within a relatively small amount of light blue cytoplasm that ordinarily contains no granules; especially in larger forms, the cytoplasm may be fairly abundant and include several bright red-violet fine granules; in contrast to granules of the myeloid series of cells, those in lymphocytes do not yield a positive oxidase or peroxidase reaction. Lymphocytes are divided into 2 principal groups, termed T and B cells, based on their surface molecules as well as function. Natural killer cells, which are large granular lymphocytes, represent a small percentage of the lymphocyte population.

Myelocytic leukemia is neither contagious nor inherited. However, people who suffer from certain genetic disorders, such as Fanconi anemia, Patau syndrome, Klinefelter syndrome, Bloom syndrome, and Down syndrome, are at greater risk of developing myelocytic leukemia than the general population. A child with Down syndrome is roughly 14 times as likely as the average child to develop leukemia.

Other Risk Factors:

    Chemicals: Exposures to high level of benzene over a long period of time may increases the risk of some blood disorder like myelocytic leukemia.

  • Radiation: People exposed to large doses of radiation are more likely to develop ML. People who have received large doses of radiation therapy for the treatment of cancers also have an increased risk of developing ML.

  • Smoking: Exposure to cancer-causing substance such as tobacco smoke increases the risk of developing myelocytic leukemia. About 20% cases of myelocytic leukemia are linked to smoking.

  • Preexisting blood disorders: People with preexisting blood disorders include myelodysplastic disorder, myelofibrosis, aplastic anemia, paroxysmal nocturnal hemoglobinuria have an increased risk of developing myelocytic leukemia.

Symptoms:

During the early stages of myelocytic leukemia most people do not have any symptoms of the disease. Whensymptoms do develop they include:

    Tiredness that will not go away.

  • Unexplained weight loss.

  • Fever.

  • Bone or joint pain.

  • Lumps or rashes on the skin.

  • Swollen and bleeding gums.

  • Shortness of breath.

  • Night sweats.

  • Unexplained bleeding or bruising.

  • Abdominal pain from a swollen spleen.

  • Poor appetite.

Diagnosis:

A doctor who suspects leukemia may start by obtaining a thorough medical history. The doctor may then conduct a very thorough physical examination to look for enlarged lymph nodes in the neck, underarm, and pelvic region. Swollen gums, enlarged liver or spleen, bruises, or pinpoint red rashes all over the body are among the signs of the disease. In addition, the physician may examine the teeth and look for dental abscesses, and may explore whether back pain is present.

Tests:

    Urine and blood tests may be ordered to check for microscopic amounts of blood in the urine and to obtain a complete differential blood count. This count will give the numbers and percentages of the different cells found in the blood. An abnormal blood test might suggest leukemia. Patients suffering from myelocytic leukemia may have high leukocyte counts and typically have low counts of both red blood cells and platelets. Many patients with myelocytic leukemia have low counts of all of the major components of the blood.

  • A microscopic exploration of the blood will usually show that leukemic blast cells are present. However, the diagnosis has to be confirmed by more specific tests.

  • The doctor may also perform a bone marrow aspiration and biopsy to confirm the diagnosis of myelocytic leukemia. Aspiration involves the withdrawal of a liquid sample of marrow. During the biopsy, a cylindrical piece of bone and marrow is removed. The tissue is generally taken out of the hipbone. These samples are sent to the laboratory for examination.

  • Cytogenetic studies, which examine the number and shape of the chromosomes in the DNA (deoxyribonucleic acid) of individual blast cells, should be conducted in addition to the immunophenotyping of cells of the bone marrow. This procedure involves applying various stains to the marrow cells. These stains help doctors identify some of the proteins lying on the surface of the cells.

Imaging: Standard imaging tests such as x rays may be used to check whether the leukemic cells have invaded other areas of the body, such as the bones, chest, kidneys, abdomen, or brain. Other tests, such as CT scans (computed tomography scans), MIR (magnetic resonance imaging), or gallium scans, are not typical for myelocytic leukemia may also be performed.

Treatment:

The primary objective in treating patients with myelocytic leukemia is to induce remission and thereafter prevent relapse. Remission is conventionally defined morphologically by the presence of fewer than 5% blasts in bone marrow together with the recovery of peripheral-blood counts. More sensitive immunologic and molecular genetic methods are now available, which should be able to characterize remission status more accurately; however, they have not yet been extensively validated clinically. Treatment is conventionally divided into two phases: induction and postinduction.

Treatment Options:

    Chemotherapy: Uses drugs to kill cancer cells. Drugs that go into the bloodstream can reach cancer cells in most part of the body. Drugs that go into the spinal fluid can reach cancer cells that spread to the brain and spinal cord.

  • Radiation Therapy: Uses high energy x-rays to kill cancer cells. Radiation therapy may be given to the patients with high-risk leukemia to treat cancer cells in the brain and spinal cord. The treatment may also keep cancer cells from spreading to those part of the body.

  • Stem cell transplantation: Replaces blood cells killed after high dose chemotherapy and radiation with stem cells that can make new blood cells.

  • Immunotherapy: Uses drugs that kill cancer cells directly or help the immune system kill those cells.

Phases:

    Phase I: For most patients, the standard first phase of myelocytic leukemia treatment is induction chemotherapy. The goal of induction chemotherapy is to bring the disease into remission. Remission is when the patient's blood counts return to normal and bone marrow samples show no sign of disease (less than 5% of cells are leukemia cells).

  • Phase II: The second phase of chemotherapy is often called consolidation chemotherapy. The goal of consolidation chemotherapy is to destroy any remaining leukemia cells. Consolidation chemotherapy is used to treat many patients with myelocytic leukemia. The second phase of treatment is based on a patient's risk factors. It is important to discuss your risk factors and your treatment options with a doctor who is experienced in treating myelocytic leukemia.

For some patients, a bone marrow or cord blood transplant may offer the best chance for a long-term remission. A transplant is a strong treatment with risks of serious side effects, so it is not used for all patients with myelocytic leukemia. A transplant is used when chemotherapy alone is unlikely to provide a long-term remission.

Types of transplants:

    Autologous transplant: An autologous transplant uses blood-forming cells collected from the patient. If an autologous transplant is a treatment option for you, you will have blood-forming cells collected from your blood stream. The cells are usually collected after one or two cycles of consolidation treatment. The cells are frozen until you are ready for transplant. You may receive an autologous transplant soon after your induction therapy is completed, or your cells may be saved as a backup option in case you relapse after receiving consolidation chemotherapy.

  • Allogeneic transplant: An allogeneic transplant replaces the abnormal cells in a patient's bone marrow with healthy blood-forming cells from a family member or unrelated donor or cord blood unit. An allogeneic transplant has a higher risk of serious side effects than consolidation chemotherapy or an autologous transplant. However, the risk of relapse is lower after an allogeneic transplant.

Side effects of treatment usually present.

NOTE: The above information is educational purpose. The information provided herein should not be used during any medical emergency or for the diagnosis or treatment of any medical condition.

DISCLAIMER: This information should not substitute for seeking responsible, professional medical care.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cart Preview

Strawberries Could Help Reduce Harmful Inflammation in Colon

Strawberries Could Help Reduce Harmful Inflammation in Colon

A new study, executed by the researchers from the University of Massachusetts Amherst, suggests that eating less than a cup of strawberries on a daily basis may help reduce harmful inflammation in the colon and improve the symptoms of inflammatory bowel disease (IBD)....

[WpProQuiz 1]

Featured Products

Exercise May Serve as an Antidepressant

A new study of nearly 18,000 participants found that those with high fitness at middle age were significantly less likely to die from heart disease in later life, even if they were diagnosed with depression. Doctor's Tips: How to Stay Fit While Treating Depression Dr....

read more

Fitness: Warm Ups Can Chill Out the Perfomance

The warm ups are supposed to increase body temperature and blood flow so the muscles and surrounding joints become more responsive and prepared for physical activity. Although there’s a neurological element to warm-ups, most research focuses on the physiological...

read more

How to Choose the Right Sport for You?

We all know that doing sports is very important, both for health and for a beautiful body. But at the moment when we decide to finally take the path, we are faced with the question: what kind of sport is right for me? So, let's start with the fact that a lot of people...

read more